skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Soleymani, Amir_Peyman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Performance and durability of electrodes in proton exchange membrane fuel cells (PEMFCs), as one of the most promising zero‐emission power generation technologies, depend on the composition, microstructure, and distribution of its components—metal catalyst, carbon support, and ionomer. Their improvement requires an in‐depth understanding of the electrodes’ structure‐property‐performance relationship, for which transmission electron microscopy (TEM) has been an invaluable tool. However, the conventional TEM sample preparation, namely epoxy‐embedding ultramicrotomy, poses impediments in imaging ionomer and distinguishing it from carbon. Therefore, in this research, an epoxy‐free ultramicrotome technique is implemented on beginning‐of‐life (BOL) and end‐of‐life (EOL) PEMFC samples. For the first time, TEM and electron tomography‐TEM images reveals fascinating details of the ionomer network, carbon particles’ structure, and Pt distribution in BOL, as well as their structural changes after the cell degradation. Finally, the structural descriptors, extracted by a proprietary quantification method, are correlated with visual observations. 
    more » « less